Math 3280

Review

- Sample spaces having equally likely outcomes.

$$
P(E)=\frac{\# E}{\# S}
$$

- Conditional prob.

$$
P(E \mid F)=\frac{P(E \cap F)}{P(F)}
$$

(Multiplicative rule) $\quad P\left(E_{1} \cdots E_{n}\right)$

$$
\begin{aligned}
&=P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{3} \mid E_{1} E_{2}\right) \\
& \cdots P\left(E_{n} \mid E_{1} \cdots E_{n-1}\right)
\end{aligned}
$$

Ever 1. Two fair dice are rolled. What is the conditional probability that at least one lands on 6 given that the dice land on different numbers?

Solution. Let E denote the event that at least one die lands on 6 , and let F denote the event that the dice land on different numbers.
Then

$$
\begin{aligned}
E & =\left\{(i, j) \in\{1,2,3,4,5,6\}^{2}: i=6 \text { or } j=6\right\} \\
F & =\left\{(i, j) \in\{1,2,3,4,5,6\}^{2}: i \neq j\right\} \\
E \cap F & =\{(1,6),(2,6), \cdots,(5,6),(6,1),(6,2), \cdots,(6,5)\}
\end{aligned}
$$

Notice that \# $(E \cap F)=10$

$$
\# F=6 \times 5=30
$$

Hence

$$
\begin{aligned}
P(E \mid F)=\frac{P(E \cap F)}{P(F)} & =\frac{\#(E \cap F) / \# S}{\# F / \# S} \\
& =\frac{\#(E \cap F)}{\# F} \\
& =\frac{10}{30}=\frac{1}{3} .
\end{aligned}
$$

§3.2 Bayes' formula.
Let E, F be two events.

$$
\begin{aligned}
E= & (E \cap F) \cup\left(E \cap F^{c}\right) \\
& (\text { black }) . \quad(\text { red })
\end{aligned}
$$

Hence

$$
P(E)=P(E \cap F)+P\left(E \cap F^{C}\right)
$$

But $P(E \cap F)=P(F) \cdot P(E \mid F)$,

$$
P\left(E \cap F^{C}\right)=P\left(F^{C}\right) \cdot P\left(E \mid F_{C}\right)
$$

We obtain

$$
P(E)=P(F) \cdot P(E \mid F)+P\left(F^{c}\right) \cdot P\left(E \mid F^{c}\right)
$$

(Total probability formula).

Hence to determine the prob. of E, we may first conduct the "conditioning upon whether or not the event F has occured

Next we give a generization of this formula.
Let $F_{1}, F_{2}, \cdots, F_{n}$ be a sequence of events such that they are mutually exclusive, and $\bigcup_{k=1}^{n} F_{k}=S \quad \begin{array}{r}\text { we say } F_{1}, \cdots, F_{n} \\ \text { are exhaustive) }\end{array}$

Then we have

$$
P(E)=\sum_{k=1}^{n} P\left(F_{k}\right) \cdot P\left(E \mid F_{k}\right) \text {. }
$$

Pf: Notice that $E=\bigcup_{k=1}^{n}\left(E \cap F_{k}\right)$
(with disjoint union)
Hence

$$
\begin{aligned}
P(E) & =\sum_{k=1}^{n} P\left(E \cap F_{k}\right) \\
& =\sum_{k=1}^{n} P\left(F_{k}\right) P\left(E \mid F_{k}\right) .
\end{aligned}
$$

Prop. (Bayes formula).
Assume F_{1}, \cdots, F_{n} are mutually exclusive and exhaustive.
Then for any $1 \leqslant i \leqslant n$,

$$
\begin{gathered}
P\left(F_{i} \mid E\right)=\frac{P\left(F_{i}\right) \cdot P\left(E \mid F_{i}\right)}{\sum_{k=1}^{n} P\left(F_{k}\right) P\left(E \mid F_{k}\right)} \\
P f: \quad \sum_{k=1}^{n} P\left(F_{k}\right) P\left(E \mid F_{k}\right)=P(E) \\
P\left(F_{i}\right) \cdot P\left(E \mid F_{i}\right)=P\left(E F_{i}\right)
\end{gathered}
$$

Example 3.
A bin contains 3 types of disposable flashlights. The probability that a type 1 flashlight will give more than 100 hours of use is .7 , with the corresponding probabilities for type 2 and type 3 flashlights being .4 and .3, respectively. Suppose that 20 percent of the flashlights in the bin are type 1,30 percent are type 2, and 50 percent are type 3.
(a) What is the probability that a randomly chosen flashlight will give more than 100 hours of use?
(b) Given that a flashlight lasted more than 100 hours, what is the conditional probability that it was a type j flashlight, $\mathrm{j}=1$, 2,3 ?

Solution: E a random chosen flashlight will give move than 100 hours.

$$
F_{i} \quad(i=1,2,3)
$$

the event that a random chosen flashlight is of type i.

We need to find out (a) $P(E)$
(b) $P\left(F_{i} \mid E\right)$

From the conditions of the question, we know

$$
\begin{gathered}
P\left(E \mid F_{1}\right)=0.7, \quad P\left(E \mid F_{2}\right)=0.4 \\
P\left(E \mid F_{3}\right)=0.3 \\
P\left(F_{1}\right)=0.2, \quad P\left(F_{2}\right)=0.3, \quad P\left(F_{3}\right)=0.5 .
\end{gathered}
$$

Hence $\quad P(E)=\sum_{i=1}^{3} P\left(F_{i}\right) P\left(E \mid F_{i}\right)$

$$
\begin{aligned}
& =0.2 \times 0.7+0.3 \times 0.4+0.5 \times 0.3 \\
P\left(F_{1} \mid E\right) & =\frac{P\left(F_{1}\right) \cdot P\left(E \mid F_{1}\right)}{P(E)} \\
& =\frac{0.2 \times 0.7}{0.2 \times 0.7+0.3 \times 0.4+0.5 \times 0.3} \\
& =\frac{14}{41}
\end{aligned}
$$

Similarly

$$
P\left(F_{2} \mid E\right)=\frac{12}{41}, \quad P\left(F_{3} \mid E\right)=\frac{15}{41} .
$$

